MAPk Activation Modulates Permeability of Isolated Rat Alveolar Epithelial Cell Monolayers Following Cyclic Stretch

نویسندگان

  • Taylor S. Cohen
  • Gladys Gray Lawrence
  • Amit Khasgiwala
  • Susan S. Margulies
چکیده

We cultured (5 days) rat alveolar epithelial cells to investigate the role of mitogen-activated protein kinase (MAPk) signaling in ventilator induced epithelial barrier dysfunction. Cells were stretched to a magnitude of 12% or 37% change in surface area at a rate of 0.25 Hz with and without pretreatment with either the JNK inhibitor SP600125 or the ERK inhibitor U0126. Following stretch (0, 10, 30, or 60 min), MAPk phosphorylation was examined, monolayer permeability to the uncharged tracer carboxyfluorescein measured (0, 10, 60 min of stretch), and occludin expression determined (0 and 60 min of stretch). Stretch to 12%, previously shown not to increase monolayer permeability, did not alter phosphorylation of any MAPk or occludin expression at any time point. Following stretch to 37%, phosphorylation of JNK, ERK, and p38 was significantly higher by 10 minutes than in unstretched monolayers. Phosphorylation of JNK and p38 subsided as stretch continued, and by 30 minutes returned to unstretched levels. Phosphorylation of ERK remained significantly elevated compared to unstretched levels at all stretch durations. Epithelial permeability increased significantly by 10 minutes of stretch compared to unstretched controls, with further significant increases by 60 minutes. Inhibition with U0126 and SP600125 prevented stretch-induced phosphorylation increases of ERK and JNK, respectively, however neither prevented increases in permeability following 10 minutes. Separately, inhibition of JNK or ERK prevented subsequent additional permeability increases as stretch continued to 60 minute time points. Inhibition of JNK, not ERK, prevented loss of occludin, and minimized loss of cell-cell contact following 60 minutes of stretch. These data suggest that stretch-induced JNK signaling modulates epithelial permeability through regulation tight junction protein expression, and is a potential target for clinical treatments during mechanical ventilation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sepsis Enhances Epithelial Permeability with Stretch in an Actin Dependent Manner

Ventilation of septic patients often leads to the development of edema and impaired gas exchange. We hypothesized that septic alveolar epithelial monolayers would experience stretch-induced barrier dysfunction at a lower magnitude of stretch than healthy alveolar epithelial monolayers. Alveolar epithelial cells were isolated from rats 24 hours after cecal ligation and double puncture (2CLP) or ...

متن کامل

Frequency and peak stretch magnitude affect alveolar epithelial permeability.

The present study measured stretch-induced changes in transepithelial permeability to uncharged tracers (1.5-5.5 A) using cultured monolayers of alveolar epithelial type-I like cells. Cultured alveolar epithelial cells were subjected to uniform cyclic (0, 0.25 and 1.0 Hz) biaxial stretch from 0% to 12, 25 or 37% change in surface area (DeltaSA) for 1 h. Significant changes in permeability of ce...

متن کامل

Cyclic stretch magnitude and duration affect rat alveolar epithelial gene expression.

Mechanical ventilation with large tidal volumes can increase lung alveolar permeability and initiate inflammatory responses; but the mechanisms that regulate ventilator-associated lung injury and inflammation remain unclear. Analysis of the genomic response of the lung has been performed in intact lungs ventilated at large tidal volumes. This study is the first to study the genomic response of ...

متن کامل

FGF-10 prevents mechanical stretch-induced alveolar epithelial cell DNA damage via MAPK activation.

Cyclic stretch of alveolar epithelial cells (AEC) can alter normal lung barrier function. Fibroblast growth factor-10 (FGF-10), an alveolar type II cell mitogen that is critical for lung development, may have a role in promoting AEC repair. We studied whether cyclic stretch induces AEC DNA damage and whether FGF-10 would be protective. Cyclic stretch (30 min of 30% strain amplitude and 30 cycle...

متن کامل

Modulation of Ion Conductance and Active Transport by Tgf- 1 in Alveolar Epithelial Cell Monolayers

Transforming growth factor1 (TGF1) may be a critical mediator of lung injury and subsequent remodeling during recovery. We evaluated the effects of TGF1 on the permeability and active ion transport properties of alveolar epithelial cell monolayers. Rat alveolar type II cells plated on polycarbonate filters in defined serum-free medium form confluent monolayers and acquire the phenotypic charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010